

Intrusion Detection System (IDS) Evasion//
May 10, 2006

An iDefense Security Report
The VeriSign® iDefense® Intelligence Team

INSIDE THIS REPORT

1 Simple IDS Evasion Techniques ... 2

1.1 Pattern-Matching Weaknesses .. 2
1.2 Unicode Evasion Techniques .. 3
1.3 Denial of Service (DoS) Attacks .. 3
1.4 False Positive Generation ... 3
1.5 Session Splicing .. 3

2 Complex IDS Evasion Techniques .. 5
2.1 Fragmentation... 5
2.2 Time-To-Live Attacks.. 5
2.3 Invalid RST Packets... 6
2.4 Urgency Flag ... 6
2.5 Polymorphic Shellcode ... 7
2.6 ASCII Shellcode ... 7
2.7 Application-Layer Attacks... 7

3 Solving The Evasion Problem... 9
3.1 Normalization.. 9
3.2 Packet Interpretation Based on Target Host.. 10
3.3 Time-To-Live Problem.. 10
3.4 Dealing With The Shellcode Problem... 10

4 Conclusion .. 11

Created and distributed by the iDefense Intelligence Operations Team

 - A VeriSign Company

21345 Ridgetop Circle, Sterling, VA 20166
Toll Free: 877.516.2974 Main: 703.390.1230 Fax: 703.390.9456
www.idefense.com | di@idefense.com

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

2

1 Simple IDS Evasion Techniques

Intrusion detection system (IDS) technology became popular with most system administrators in the mid-
to-late 1990s because they allowed administrators to identify if and when a break-in had been attempted.
The technology seemed simple enough, a network appliance that monitored network traffic for signs of
an attack or abusive behavior and alerted system administrators.

Soon after IDS technology emerged in the corporate environment, hackers introduced several methods
for evading detection. At first, evasion techniques were crude, with denial of service (DoS) attacks, false
positives and simple pattern-matching techniques among the simplest. Over time, however, more
complex methods became available to hackers such as session splicing, fragmentation and polymorphic
shellcode.

The introduction of IDS technology and the subsequent response by malicious actors marked the
beginning of a race between hackers and IDS developers; developers fixing problems with IDS technology
to better detect attack signatures, while hackers busily creating with new ways to elude the improved IDS
technology.

This report explores why IDS technology, while useful, should not be considered an all-in-one solution for
network security. IDS technology alone should not be relied upon to give an accurate assessment of a
networks security status, but should be used in conjunction with other technologies that complement the
strengths inherent in this technology.

1.1 Pattern-Matching Weaknesses

Many of the evasion techniques crafted by hackers exploit the pattern-based detection approach
employed by most IDS. Pattern-based detection uses pattern matching to identify potential attacks based
on known vulnerabilities or commonly used strings within exploit code. This approach is problematic,
however, because not all input need be the same to trigger certain vulnerabilities, and even slight
changes in input can bypass detection patterns, making it difficult to develop effective patterns. The
following example illustrates a pattern that would be processed from an HTTP session, and an
obfuscated version that attempts to bypass the pattern.

Pattern:
GET /cgi-bin/phf?

Obfuscation:
GET /cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%25%2fp%68f?

Both versions result in the same output, yet look very different.

This example is simplistic and may or may not bypass the pattern matching engines of most IDS
technology. However, it effectively demonstrates that input can vary and still yield the same output.

Most modern IDSs have greatly improved in this particular area. However, some publicly released
signatures can be bypassed due to weaknesses in the signature patterns used.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

3

1.2 Unicode Evasion Techniques

A similar method of eluding IDS technology involves Unicode. Unicode is a character representation that
gives each character a unique identifier for each written language to facilitate uniform the computer
representation of each language.

This is problematic for IDS technology because it is possible to have multiple representations of a single
character. For example, '\' can be represented as 5C, C19C and E0819C, which makes writing pattern
matching signatures very difficult. However, the Unicode standard was recently changed to make
multiple representations illegal. It is important to note, however, that some applications may still be
using the old standard.

One example of how Unicode affects IDS is present in the Microsoft IIS 4.0/5.0 Directory Traversal
vulnerability released in October 2000 by Rain Forrest Puppy. This IIS vulnerability improperly restricts
directory listings that were Unicode encoded within the URL request. This allowed remote attackers to
view files on the IIS server that they normally would not be permitted to see.

1.3 Denial of Service (DoS) Attacks

Many IDSs employ central logging servers that are used solely to store IDS alert logs. The central
server's function is to centralize alert data so it can be viewed as a whole rather than on a system-by-
system basis. However, if attackers know the central log server's IP address, they could slow it down or
even crash it using a DoS attack. After the server is shut down, attacks could go unnoticed because the
alert data is no longer being logged.

Another method attackers might use is to send false positives in an attempt to fill the central log server's
disk space. Once the disk space is filled, attacks might go unnoticed because, again, the alert data is no
longer being logged.

1.4 False Positive Generation

Another attack similar to the DoS method is to generate a large amount of alert data that must be logged.
Attackers can craft packets known to trigger alerts within the IDS, forcing it to generate a large number
of false reports. This type of attack is designed to create a great deal of log "noise" in an attempt to blend
real attacks with the false. Attackers know all too well that when looking at log data, it can be very
difficult to differentiate between legitimate attacks and false positives.

If attackers have knowledge of the IDS system, they can even generate false positives specific to that IDS.
Furthermore, most IDSs contain the same, or at least very similar, signatures for several attacks. Both
of these factors greatly increase the likelihood of a successful attack because the more signatures that
IDSs have in common, and the more attackers know about a given IDS, the more false positives they can
generate.

1.5 Session Splicing

Session splicing is an IDS evasion technique that exploits how some IDSs do not reconstruct sessions
before performing pattern matching on the data. In addition, some IDSs only reassemble parts of a
session because reassembly is a very processor-intensive task.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

4

The idea behind session splicing is to split data between several packets, making sure that no single
packet matches any patterns within an IDS signature. Furthermore, if attackers know what IDS system is
in use, they could add delays between packets to bypass reassembly checking. Many IDSs reassemble
communication streams, so if a packet is not received within a reasonable amount of time, many IDSs
stop reassembling and handling that stream. If the application under attack keeps a session active longer
than an IDS will spend on reassembling it, the IDS will stop. As a result, anything after the IDS stops
reassembling the session will be susceptible to malicious data sent by the attacker, which would go
unnoticed.

Modern IDSs have found ways to handle session splicing. For example, reassembling the full packet
stream is now common practice, which essentially puts an end to session splicing attacks.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

5

2 Complex IDS Evasion Techniques

2.1 Fragmentation

Fragmentation attacks are similar to session splicing attacks in that attackers send packets in blocks
that do not trigger an IDS signature or cause an alert. Fragmentation attacks are generally more
powerful than session splicing attacks, but attackers can be more creative in evasion. There are two
fragmentation methods commonly used to elude IDSs. One method overwrites a section of a previous
fragment, while the second method overwrites a complete fragment. This can be useful for attackers
because it enables them to write an entire packet of garbage information and craft their attack to blend in
with standard protocols. The following are two examples of fragmentation attacks:

Attack 1: Overlap Method

Packet 1: GET /cgi-bin/
Packet 2: aa/../phxx
Packet 3: f?

This example of fragmentation can overwrite the 'xx' portion of Packet 2 with the data in Packet 3, making
the information resemble the following:
GET /cgi-bin/ aa/../phf?

Attack 2: Overwrite Method

Packet 1: GET /cgi-bin/
Packet 2: some_normal_filename.cgi
Packet 3: /aaa/../aaa/../aaa/../phxx
Packet 4: f?

This example is similar to the first, but in this example, the 'xx' portion is overwritten and the
some_normal_filename.cgi packet is completely overwritten with the last two packets. This leaves GET
/cgi-bin/phf? as the end result.

It is important to note, however, that IDSs such as Snort have found ways to handle these types of attacks
through reassembly.

2.2 Time-To-Live Attacks

Time-to-live attacks are yet another way attackers can bypass IDS technology. For this technique to work
properly, attackers must have some knowledge of the internal network topology. If attackers know the
distance to the end host and whether an IDS is placed in front of the end host, they can bypass detection.
By using a small TTL flag in a TCP packet, attackers can use their knowledge of the network topology and
send packets that will only reach the IDS. The IDS, in turn, will think the packet addressed to the end host
will make it there, which allows attackers to inject garbage packets into the IDS stream processing. By
sending some packets with a large TTL flag, attackers guarantee the packet will reach the end host.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

6

Using a small TTL flag allows attackers to send packets addressed to the end host to the IDS without the
packet ever getting to the end host. The following is an example of a time-to-live attack:

Packet 1: GET /cgi-bin/p TTL 10
Packet 2: some_file.cgi?= TTL 5
Packet 3: hf? TTL 10

This example assumes that the end host is beyond the 10 TTL limit and will receive the data. It also
assumes that the IDS is within the 5 TTL limit, and any data lower than that will not reach the destination
host. The means that the end host will receive "GET /cgi-bin/phf?" while the IDS receives
"GET /cgi-bin/psome_file.cgi?=hf?."

2.3 Invalid RST Packets

The TCP protocol uses checksums to ensure that communication is reliable. A checksum is added to
every transmitted segment and it is checked at the receiving end. When a checksum differs from the
checksum expected by the receiving host, the packet is dropped at the receiver's end.

The TCP protocol also uses an RST packet to end two-way communications. Attackers can use this
feature to elude detection by sending RST packets with an invalid checksum, which causes the IDS to stop
processing the stream because the IDS thinks the communication session has ended. However, the end
host sees this packet and verifies the checksum value, then drops the packet if it is invalid.

Some IDS systems might interpret this packet as an actual termination of the communication and stop
reassembling the communication. Such instances allow attackers to continue to communicate with the
end host while confusing the IDS because the end host accepts the packets that follow the RST packet
with an invalid checksum value.

2.4 Urgency Flag

The urgency flag is used within the TCP protocol to mark data as urgent. TCP uses an urgency pointer
that points to the beginning of urgent data within a packet. When the urgency flag is set, all data before
the urgency pointer is ignored, and the data to which the urgency pointer points is processed.

Some IDSs do not take into account the TCP protocol's urgency feature, which could allow attackers to
evade IDS, as seen in other evasion techniques. Attackers can place garbage data before the urgency
pointer, and the IDS reads that data without consideration for the end host's urgency flag handling. This
means the IDS has more data than the end host actually processed. The following is an example of an
urgency flag attack:

"1 Byte data, next to Urgent data, will be lost, when Urgent data and normal data are combined."

Packet 1: ABC
Packet 2: DEF Urgency Pointer: 3
Packet 3: GHI
End result: ABCDEFHI

This example illustrates how the urgency flag works in conjunction with the urgency pointer. According to
the 1122 RFC, the urgency pointer causes one byte of data next to the urgent data to be lost when urgent
data is combined with normal data.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

7

2.5 Polymorphic Shellcode

Most IDSs contain signatures for commonly used strings within shellcode. This is easily bypassed by
using encoded shellcode containing a stub that decodes the shellcode that follows. This means that
shellcode can be completely different each time it is sent.

Polymorphic shellcode allows attackers to hide their shellcode by encrypting it in a simplistic form. It is
difficult for IDSs to identify this data as shellcode. This method also hides the commonly used strings
within shellcode, making shellcode signatures useless.

2.6 ASCII Shellcode

Similar to polymorphic shellcode, ASCII shellcode contains only characters contained within the ASCII
standard. This form of shellcode is useful to attackers because it allows them to bypass commonly
enforced character restrictions within string input code. It also helps attackers bypass IDS pattern
matching signatures because strings are hidden within the shellcode in a similar fashion to polymorphic
shellcode.

Using ASCII for shellcode is very restrictive in that it limits what the shellcode can do under some
circumstances because not all assembly instructions convert directly to ASCII values. This restriction can
be bypassed using other instructions or a combination of instructions that convert to ASCII character
representation, which serves the same purpose of the instructions that improperly convert. The following
is an ASCII shellcode example:

char shellcode[] =
 "LLLLYhb0pLX5b0pLHSSPPWQPPaPWSUTBRDJfh5tDS"
 "RajYX0Dka0TkafhN9fYf1Lkb0TkdjfY0Lkf0Tkgfh"
 "6rfYf1Lki0tkkh95h8Y1LkmjpY0Lkq0tkrh2wnuX1"
 "Dks0tkwjfX0Dkx0tkx0tkyCjnY0LkzC0TkzCCjtX0"
 "DkzC0tkzCj3X0Dkz0TkzC0tkzChjG3IY1LkzCCCC0"
 "tkzChpfcMX1DkzCCCC0tkzCh4pCnY1Lkz1TkzCCCC"
 "fhJGfXf1Dkzf1tkzCCjHX0DkzCCCCjvY0LkzCCCjd"
 "X0DkzC0TkzCjWX0Dkz0TkzCjdX0DkzCjXY0Lkz0tk"
 "zMdgvvn9F1r8F55h8pG9wnuvjrNfrVx2LGkG3IDpf"
 "cM2KgmnJGgbinYshdvD9d";

When executed, the shellcode above executes a "/bin/sh" shell. Looking closely, readers will see that 'bin'
and 'sh' are contained in the last few bytes of the shellcode.

2.7 Application-Layer Attacks

Application layer attacks enable many different forms of evasion. Many applications that deal with media
such as images, video and audio employ some form of compression that allows the media to be sent in a
form much smaller than the original, uncompressed form, which increases data transfer speeds. When a
flaw is found in these applications, the entire attack can occur within compressed data, and the IDS will
have no way to check the compressed file format for signatures.

Many IDSs look for specific conditions that allow for an attack. However, there are times when the attack
can take many different forms. For example, integer overflow vulnerabilities could be exploited using

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

8

several different integer values. This fact combined with compressed data makes signature detection
extremely difficult.

A recent example of an application layer attack was possible within the Windows Media Player BMP flaw
MS06-005. By making shellcode that contained several different forms of "nops" (i.e., no operation
opcode), it was possible to create a seemingly legitimate bitmap file. Combined with polymorphic
shellcode at the end of the nopsled, this could easily evade any IDS signatures developed for this flaw. In
addition, if the IDS does not look for the cause of the flaw (i.e., the size field within the BMP format's
header), a different size could be used nearly every time with almost no side effects on exploitation.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

9

3 Solving The Evasion Problem

So, what can IDS developers and IDS users do to resolve the evasion problem? Surprisingly, the answer
for users is very little. The best approach to mitigating the threat of IDS evasion is to maintain security
vulnerability awareness, patch vulnerabilities as soon as possible and wisely choose the IDS based on the
network topology and network traffic received.

IDS developers have created methods of avoiding many of the evasion techniques discussed above.
Methods such as stream normalization, support to properly reassemble fragmented streams and
Unicode and UTF8 decoding are just a few of the features to look for when deciding on which IDS to
deploy.

3.1 Normalization

Normalization takes obfuscated input and attempts to translate it into what the end host will eventually
see. This usually entails encoding in formats such as Unicode and UTF8. The normalization process
allows for encoding, translation and the application of pattern matching to the normalized data, which
prevents attackers from obfuscating the attack strings using Unicode or UTF8 strings. However, there are
other obfuscation methods that could circumvent this such as polymorphic shellcode, ASCII shellcode
and other encodings supported by the application being exploited. Some IDSs are attempting to apply
normalization to polymorphic shellcode, but it is difficult to spend the time required to decode
polymorphic shellcode while trying to effectively monitor the remaining network traffic.

Normalization also applies to network data. Some IDSs normalize fragmented packets and allow those
packets to be reassembled in the proper order, which enables the IDS to look at the information just as
the end host will see it. In addition, some IDSs change the time-to-live field to a large number, which
ensures that it reaches the end host.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

10

3.2 Packet Interpretation Based on Target Host

When comparing the strengths of evasion techniques to the methods used to prevent them, one can see
that IDS is at a disadvantage because these systems attempt to recreate what the end host will see and
handle. This is problematic because there are so many disparate methods of communicating data over a
network. In order to properly complete this task, the end host's TCP/IP stack should be used rather than
trying to recreate the stream in a way that the stream may be handled. In using the host to do the work,
the guessing portion of the task is eliminated. This type of system must still handle various forms of
encodings and would still be flawed in some ways, but the impact of the majority of network-based
evasions would be greatly mitigated.

Another option that may be as effective as host-based IDSs is using modular TCP/IP stacks within an IDS,
and using the stacks based on the targeted host's operating system. Before it would be practical,
however, this method must be thoroughly researched. For example, the manner in which each operating
system handles anomalous traffic must be thoroughly reviewed. Ultimately, this method may prove very
effective in mitigating network-level evasions such as fragmentation, RST packet handling and Urgency
Flags.

3.3 Time-To-Live Problem

The TTL problem presents some interesting solutions. There are several options that could solve this
problem, some of which may even help identify and eliminate future problems.

The first method of dealing with this issue is to automatically change the TTL field to a large value, which
ensures that the end host always receives the packets. In such cases attackers cannot slip information to
the IDS. As a result, that data never reaches the end host, leaving the end host with the malicious
payload. The data slipped to the IDS is intended to only reach the IDS, but if it reaches the end host, the
attack is successfully mitigated.

The second method is more complex and provides some other possibilities for the data. The first thing
that must be done is the IDS must collect all the MAC addresses within the network it is monitoring. It
must then get TTL information for each host and map that information to each host. As a result, the IDS
will know the distance to the host for which the data is destined and that host's MAC address. This could
lend itself to other forms of detection that are purely signature based. However, if hosts regularly move
within the network, this data must be updated.

3.4 Dealing With The Shellcode Problem

One method of detecting polymorphic shellcode deals with looking for nop opcode other than 0x90. There
are several op codes that do not touch memory, but alter register values. These opcodes are commonly
used within polymorphic shellcode to mask it from IDSs. The current method entails referencing a
number of nop opcodes within a threshold and creating an alert if that threshold is reached. This method
is fairly accurate, but has been known to yield false positives. In addition, this method does not limit the
impact of shellcode and the creative things that attackers can do with it.

Intrusion Detection System (IDS) Evasion
An iDefense Security Report
Copyright 2006 iDefense, A VeriSign Company

11

4 Conclusion

While there are many ways to evade IDSs, there equally as many ways to detect attacks that use evasion
techniques. For IDS technology to be truly effective, they must attempt to detect all attacks and mitigate
evasion. Clearly, this gives attackers the upper hand.

This paper is intended to inform organizations about the strengths and weaknesses inherent in IDSs. IDSs
are useful tools, but they have limitations. By using IDS technology, it is easier to track what happens
within a network. However, information provided solely by IDSs may not be sufficient enough to
thoroughly protect the network. Sometimes the wire will be quiet during an attack, other times it will be
noisy. So how can system administrators truly know when an attack is taking place? The answer is to
reinforce IDSs with other technologies that complement their inherent strengths.

The soundest approach to security in any network environment is to limit the avenues of attack. This
means applying the latest software fixes and patches as soon as possible. Sound security practices do not
alleviate the need for IDS technology, but do limit the dependency on such systems.

When deploying an IDS, organization should have a thorough understanding of the network on which it is
deployed. It is advisable to identify network entry points, the number of hosts that will be monitored and
network traffic when deploying any IDS. Having a thorough understanding of the network topology will
help mitigate the evasion techniques discussed in this report and improve the efficacy of IDS technology.

